4 results (0,13254 seconds)

Brand

Merchant

Price (EUR)

Reset filter

Products
From
Shops

Designing Electrolytes for Lithium-Ion and Post-Lithium Batteries

Lithium Niobate Nanophotonics

Lithium Niobate Nanophotonics

Photonic integrated circuit (PIC) technology holds great potential for breaking through the bottlenecks in current photonic and optoelectronic networks. Recently a revolution has been witnessed in the field of lithium niobate (LN) photonics. Over the past decade nanoscale LN waveguides with a propagation loss of ~0. 01 dB and a radius of curvature on the level of ~100 μm have been demonstrated. The revolution mainly benefits from two technological advancements the maturity of lithium-niobate-on-insulator (LNOI) technology and the innovation of nanofabrication approaches of high-quality LNOI photonic structures. Using low-loss waveguides and high-quality-factor (high-Q) microresonators produced on the LNOI platform as building blocks various integrated photonic devices have been demonstrated with unprecedented performances. The breakthroughs have reshaped the landscape of the LN industry. This is the first monograph on LN nanophotonics enabled by the LNOI platform. It comprehensively reviews the development of fabrication technology investigations on nonlinear optical processes and demonstrations of electro-optical devices as well as applications in quantum light sources spectroscopy sensing and microwave-to-optical wave conversion. The book begins with an overview of the technological evolution of PICs justifying the motivation for developing LNOI photonics. The next four chapters focus on LNOI photonics. The book concludes with a summary of the milestone achievements discussed in these chapters and provides a future perspective of this area of research. | Lithium Niobate Nanophotonics

GBP 116.00
1

Handbook of Sodium-Ion Batteries Materials and Characterization

From Atoms to Higgs Bosons Voyages in Quasi-Spacetime

From Atoms to Higgs Bosons Voyages in Quasi-Spacetime

The announcement in 2012 that the Higgs boson had been discovered was understood as a watershed moment for the Standard Model of particle physics. It was deemed a triumphant event in the reductionist quest that had begun centuries ago with the ancient Greek natural philosophers. Physicists basked in the satisfaction of explaining to the world that the ultimate cause of mass in our universe had been unveiled at CERN Switzerland. The Standard Model of particle physics is now understood by many to have arrived at a satisfactory description of entities and interactions on the smallest physical scales: elementary quarks leptons and intermediary gauge bosons residing within a four-dimensional spacetime continuum. Throughout the historical journey of reductionist physics mathematics has played an increasingly dominant role. Indeed abstract mathematics has now become indispensable in guiding our discovery of the physical world. Elementary particles are endowed with abstract existence in accordance with their appearance in complicated equations. Heisenberg’s uncertainty principle originally intended to estimate practical measurement uncertainties now bequeaths a numerical fuzziness to the structure of reality. Particle physicists have borrowed effective mathematical tools originally invented and employed by condensed matter physicists to approximate the complex structures and dynamics of solids and liquids and bestowed on them the authority to define basic physical reality. The discovery of the Higgs boson was a result of these kinds of strategies used by particle physicists to take the latest steps on the reductionist quest. This book offers a constructive critique of the modern orthodoxy into which all aspiring young physicists are now trained that the ever-evolving mathematical models of modern physics are leading us toward a truer understanding of the real physical world. The authors propose that among modern physicists physical realism has been largely replaced—in actual practice—by quasirealism a problematic philosophical approach that interprets the statements of abstract effective mathematical models as providing direct information about reality. History may judge that physics in the twentieth century despite its seeming successes involved a profound deviation from the historical reductionist voyage to fathom the mysteries of the physical universe. | From Atoms to Higgs Bosons Voyages in Quasi-Spacetime

GBP 76.99
1